Typing performance of blind users: An analysis of touch behaviors, learning effect, and in-situ usage


Non-visual text-entry for people with visual impairments has focused mostly on the comparison of input techniques reporting on performance measures, such as accuracy and speed. While researchers have been able to establish that non-visual input is slow and error prone, there is little understanding on how to improve it. To develop a richer characterization of typing performance, we conducted a longitudinal study with five novice blind users. For eight weeks, we collected in-situ usage data and conducted weekly laboratory assessment sessions. This paper presents a thorough analysis of typing performance that goes beyond traditional aggregated measures of text-entry and reports on character-level errors and touch measures. Our findings show that users improve over time, even though it is at a slow rate (0.3 WPM per week). Substitutions are the most common type of error and have a significant impact on entry rates. In addition to text input data, we analyzed touch behaviors, looking at touch contact points, exploration movements, and lift positions. We provide insights on why and how performance improvements and errors occur. Finally, we derive some implications that should inform the design of future virtual keyboards for non-visual input.

Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility
Hugo Nicolau
Assistant Professor